
AI Command Language:
=====================================

Unit Identification and Security

name [unit name] - This sets the units name.
Example:

name Warrior 1

author [player name] - This sets the authors name.
Example:

name John Doe

password [security password]    - This sets the units security
password. If this line is entered in the units code the units AI
will not allow editing or debugging without a proper security
password entered in the battle setup screen.
Example:

password allison

iff code [any code number or word(s)] - Identify friend or
foe.    Units with matching iff codes will show up as a friend
on any scan.
Example:

iff code read team

Debugging

Debug on - saves any following commands that are seen by
the unit to the debug watch buffer.    This buffer can be viewed
by selecting the debug watch button from the battle summary
screen.
Example:

debug on

WARNING: you may wish to remove these statements from
AI files that you distribute because    this will allow other users
to see portions of    your code when they view the debug watch
for that unit.

Note: an active debug watch will slow down the battle due to
the extra processing overhead created.

Debug off - stops saving command information to the debug
watch buffer.
Example:

debug off

Debug on and off are used with the debug watch screen.   
This screen is only available in the registered version.

Beep - Plays the windows default beep sound.    Useful in
debug mode to determine if a section of code is being read in
the units AI.
Example:

if bump barrier then beep

Note:
; Comments:    Lines that begin with a semi-colon are
considered comments and will be ignored by the AI
interpreter.
Example:

; this is a comment line

Program Branching

goto [routine name] - This will jump from one section of the
units AI code to another routine (label) in the program.   
Routine names can be anything followed by a colon “:”.   
Example:

start:
move forward
goto start

Unit Damage Status and Repairs

if damage is > # then [additional command]
if damage is < # then [additional command]
if damage is = # then [additional command]
If damage is greater than, less than, or equal to the percent
given then execute the command to the right of the word then.
Note: do not include a percent sigh “%”.    Valid percent
entries are 0 through 99
Example:

if damage is > 95 then self destruct

if fuel is > # then [additional command]
if fuel is < # then [additional command]
if fuel is = # then [additional command]
If fuel is greater than, less than, or equal to the percent given
then execute the command to the right of the word then.
Note: do not include a percent sigh “%”.    Valid percent
entries are 0 through 99
Example:

if fuel is < 100 then goto hide

attempt repairs - This will try to repair any damage that the
unit has.    You have a 1 in 10 chance of it working.    This
requires a lot of energy therefore you cannot have shields
raised while attempting this.

WARNING: There is also a 5 Percent chance that you will
damage the fuel system when you attempt repairs during
operation this will cause your unit to burn fuel less efficiently.

Advanced commands:
#cur_life    &    #max_life: see system variables
#cur_fuel & #max_fuel: See system variables.
#burn: See system variables.

Randomizing Units AI

generate random - generates a random number between 1
and 4.
Example:

generate random

if random is 1 then [additional command]
if random is 2 then [additional command]
if random is 3 then [additional command]
if random is 4 then [additional command]
If the random number generated by the generate random
command is equal to the number specified then execute the
command to the right of the word then
Example:

if random is 4 then turn right

Advanced command:
#random: see system variables

Scan ning for objects and other units

long range scan - This will scan the entire distance
between the unit and the edge of the battlefield.

scan forward - This will scan the area of 5 spaces out
directly in front of the unit.

Note: 5 spaces is the range of the primary weapon.

scan right - This will scan the area of 5 spaces out from the
right of the unit.

scan left - This will scan the area of 5 spaces out from the
left of the unit.

scan perimeter - This will scan all spaces directly around
the unit.

scan position 1 - This scans one space directly north of the
unit.

scan position 2 - This scans one space directly northeast of
the unit.

scan position 3 -This scans one space directly east of the
unit.

scan position 4 -This scans one space directly southeast of
the unit.

scan position 5 -This scans one space directly south of the
unit.

scan position 6 -This scans one space directly southwest of
the unit.

scan position 7 -This scans one space directly west of the
unit

scan position 8 -This scans one space directly northwest of
the unit.

cross scan - This scans one space north, south, east and
west of the unit.

corner scan - This scans one space northeast, southeast,
northwest and southwest of the unit.

if scan found barrier then [additional command]
if scan found enemy then [additional command]
if scan found friend then [additional command]
if scan found flag then [additional command]
if scan found mine then [additional command]
if scan found nothing then [additional command]
If the scan returns the presence of a a barrier, enemy, friend or
flag then execute the command to the right of the word then.
Note: If a scan that searches in more than one direction such
as the cross scan, perimeter and corner scan finds more than
one object type (i.e.; barrier flag and enemy) the scan will
return items in the following priority (the top takes priority
over the bottom):

· Enemy / Friend
· Mine
· Flag
· Barrier

Example:

scan position 5
if scan found enemy fire weapon

Advanced commands:
#scan, #enemy_h and #enemy_d : see system variables.

#enemy_x    &    #enemy_y

To help your unit locate other units in battle, you may use the
variables #enemy_x and #enemy_y.    These variables will
give you the X and Y locations of the closest AI unit (friend or
enemy).    See the System variables section for more
information on how to use these variables.      The Tracker.ai
program is an example of how to utilize these variables.

Example:

if x coordinate is = #enemy_x then turn
right

Movement and location

move forward - Moves unit one space forward in its current
direction. This command will have no effect if a barrier blocks
its path.
Example:

move forward

move backward - Moves unit one space backwards from its
current direction. This command will have no effect if a
barrier blocks its path.
Example:

move backward

turn right - Turns unit to face right from its current direction.
Example:

turn right

turn left - Turns unit to face left from its current direction.
Example

turn left

if facing north then [additional command]
if facing south then [additional command]
if facing east then [additional command]
if facing west then [additional command]
If the unit is facing north, south, east or west then execute the
command to the right of the word then.
Example:

if facing east then turn left

if x coordinate is < # then [additional command]
if x coordinate is > # then [additional command]
if x coordinate is = # then [additional command]
if y coordinate is < # then [additional command]
if y coordinate is > # then [additional command]
if y coordinate is = # then [additional command]
If    the units X or Y coordinate equals the number specified
then execute the command to the right of the word then.
Coordinates (top left corner =    x:1, y:1, bottom left corner
x:43, y:30)

Example:
if x coordinate = 18 then turn right

if bump barrier then [additional command] - Use this to
check and see if movement is blocked by a barrier.    If a
barrier is blocking the units path then it will execute the
command to the right of the word then.
Example:

if bump barrier then turn right

Advanced Command:
#cur_head closest enemy heading

1=North
2=East
3=South
4=West

Weapons Control

fire weapon - Fires the units primary weapon.    This is a
projectile that does maximum damage to an unshielded enemy
unit at close range.    Shields and range effect the amount of
damage given. Shielded units are completely protected from
medium and long range shots.
Note: the range of the weapon is 5 spaces.
Example:

fire weapon

launch missile - Launches missile.    The missile will travel
in the direction fired until a object is hit.    Missiles do 90%
damage to units that are hit with their shields down. They do
70% damage to any unit nearby the detonation with their
shields down.    Units with shields up will receive 30% less
damage overall.   
WARNING: do not fire the missile with your shields up. The
missile will misfire doing 90% damage to the launching unit.

Note: Missiles require 300 fuel and 10 ammo to fire.
Example:

if ammo is > 10 then
launch missile

end if

discharge energy - This will discharge a blast of energy
from your unit causing it one point of damage. Any enemy
unit caught in this blast will take 3 points of damage. A energy
discharge will destroy any flags and mines in the blast area.   
This is a good way to sweep for mines and deny any other
players flags if your damage is zero.
Example:

if scan found enemy then
discharge energy

end if

self destruct - This is a last resort.    A unit that self destructs
will not leave a flag.    Any unit caught in the blast wave of a
self destructing unit will receive blast wave damage equal to
the amount of    damage points remaining on the destructing
unit and the maximum damage setting.    Example: if
maximum damage is set to 10 and the destructing unit has 3
damage points then the blast wave will do 7 points of damage
to any unit directly next to the self destructing unit.
Example:

if damage is > 95 then self destruct

lay mines on - While this is on the unit will lay a mine every
time it moves forward or backward one space. A mine requires
2 ammo to produce.
Example:

if scan found enemy then
lay mines on

end if

lay mines off - This stops the laying of mines when the unit
moves one space forward or backward. A mine requires 2
ammo to produce.

if ammo is > # then [additional command]   
if ammo is < # then [additional command]   
if ammo is = # then [additional command]   
If the units ammo is greater than, less than or equal to the
number given then execute the command to the right of the
word then.
Note the maximum amount of ammo a unit can carry is 99.
Example:

if ammo is > 10 then lay mines on
or
if ammo is < 10 then lay mines off

if no ammo then [additional command]
If the unit has no ammo remaining then execute the command
to the right of the word then.
Example:

if no ammo then goto hideout

if missile ready then [additional command]
If the missile has enough fuel and ammo to launch then do the
command to the right of the word then.
Example:

if missile ready then launch missile

Note: this doesn’t check the status of the shield be sure to
lower shield before firing a missile.

Advanced Commands:
#cur_ammo & #set_ammo: See system variables.

Protection

raise shield - Raises shield to protect unit from medium and
long range enemy fire and minimizes short range weapon
blasts. The shield only protects against projectiles the shield is
defenseless against energy discharges , overloads and self
destruct blast waves. The shield requires most of the units
power    therefore, you cannot fire weapon or attempt repairs
with the shield raised.
Example:

lower shield
fire weapon
raise shield

lower shield - Lowers shield to allow weapon firing and to
attempt repairs.   

if shield is up then [additional command]
if shield is down then [additional command]
If the units shield is raises or lowered then execute the
command to the right of the word then.
Example:

if shield is down then fire weapon

Advanced Command:
#shield: See system variables.

Advanced Commands
Nesting:   

 if    … then
…

end if

You may nest if statements by using the following syntax:

if scan found flag then
if damage is = 0 then

turn right
turn right

end if
end if

the command compiler sees these commands in this
manner:

line 1:
if scan found flag then if damage is = 0
then turn right

line 2:
if scan found flag then if damage is = 0
then turn right

Warning: you must be careful not to check for two
conditions at the same time for example:

if scan found flag then
scan forward
if scan found barrier then

turn right
end if

end if

the command compiler sees these commands in this
manner:

line 1:
if scan found flag then scan forward

line 2:
if scan found flag then if scan found
barrier then turn right

Notice that line 2 cannot work because scan cannot be both
a flag and a barrier.

Keep in mind how the compiler sees nested commands so
you do not fall into this trap.

User Variables:

You have 10 variables that you can use in your AI code:

v0, v1, v2, v3, v4, v5, v6, v7,v8 and v9

variables have their names and their values:

if you want to reference its value you must place a tilde in
front of it’s name example:

if the variable v2 had a value of 67 and you wanted to use its
value in a command    you would address v2 in the following
manner:

assign v7 ~v2

This command passes the value of 67 to the variable v7.   

These variables can be manipulated using the following
commands:

System Variables

System variables can be referenced but cannot be changed.   
They always begin with the “#” symbol.

The system variables are:

#cur_fuel Current fuel value
#max_fuel Battle Start fuel setting
#cur_ammo Current ammo value
#set_ammo Battle start ammo setting
#cur_score Current score
#random Last random number generated
#scan Last scanned item

0 = nothing
1 = barrier
2 = enemy
3 = mine
4 = friend
5 = flag

#shield shield status 1 = on, 0 = off.
#burn current fuel burn rate

Note: The burn rate will increase every time
the unit sustains damage.

#x_pos current unit X coordinate
#y_pos current unit Y coordinate
#cur_life current damage value
#max_life maximum damage setting
#cur_head current heading

1=North
2=East
3=South
4=West

#enemy_x closest enemy x position
#enemy_y closest enemy y position
#enemy_h closest enemy heading

1=North
2=East

3=South
4=West

#enemy_d closest enemy damage value

Advanced Commands:

assign v# ~v#
assign v# [any value]
assign v# #(system_variable)

The assign command assigns a variable a specific value

examples:

assign v6 ~v1
or
assign v2 300
or
assign v0 #cur_fuel

math v# = (value) (+, -, *, /) (value) …
The math statement is used to do math calculations to a
variable.

“+” = add
“-“ = subtract
“*” = multiply
“/” = devide
Example:

math v4 = ~v4 + ~v3
or
math v4 = ~v4 + #cur_ammo
or
math v6 = ~v6 / ~v3 + 7

Detailed example:

if the value of v6 is 10 and the value of #cur_ammo is 100
and the command read:

math v0 = #curr_ammo / ~v6 + 4

this would make v0 would be 14.

This is what the compiler would see:

v0 = (100 / 10) + 4
v0 = 14.

High level if statements:

if    value (variable) (>, <, =, <>, >=, <=) (value or
variable) then [additional command]

If the condition of the statement is true then do the command
to the right of the word then.

Examples:

if value ~v6 > 100 then fire weapon
or
if value #set_ammo > ~v6 then

self destruct
end if
or
assign v3 #scan
if value ~v3 <> barrier then

raise shield
move forward

end if

=====================================

Notes

· If you take a flag with full power (no damage) your
system will overload and you will take 50% damage.
· If you are damaged and you take a flag all damage
will be repaired and 10 ammo will be added.
· Each unit gets 1 ammo for every 50 game clicks.    (If
a game has 1000 clicks you get 10 ammo to start.)
· If a unit hits a mine it will do 50% of the maximum
damage setting to the unit.
· Fuel and power are separate.    Fuel is only needed for
mobility. Running out of fuel only means that your AI unit
will not be able to move forward, backward or turn.

